展望
雖然鈣鈦礦的光電轉換效率突飛猛進,但是它的穩定性至今仍然是阻礙他成為商用太陽能電池其中一個很大的阻礙。目前常見用來穩定的化學方法用遷入有機高分子層或是疏水的有機陽離子來保護 (像是前段提到的RP phase) 鈣鈦礦免於水份的入侵以增加穩定性。能隙,載子的結合能 (binding energy) 還有傳輸行為 (charge-transport properties) 也可以透過鈣鈦礦元素的stoichiometric ratio 還有選擇不同的元素來調控。物理方面的隔絕方法可以通過長無機版本的鈣鈦礦或是直接用物理方法的保護層隔絕。此外,鹵素鈣鈦礦材料目前仍含有大量的鉛元素,鉛的高毒性對於地球環境與生物系統是極大的危害,因此引入無鉛的鈣鈦礦材料毫無疑問是未來科學發展的主流。
參考文歲
1. Tang, H., He, S., Peng, C. A Short Progress Report on High-Efficiency Perovskite Solar Cells. Nanoscale Res.Lett., 12, 410, 2017.
2. Shi, E., Gao, Y., Finkenauer, B. P., Akriti, Coffey, A. H., Dou, L. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev., doi: 10.1039/C7CS00886D, 2018.
3. Yuan, Z., Shu, Yu., Xin, Y., Ma, B. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem. Commun., 52, 3887-3890, 2016.
4. Gao, P., Grätzel, M., Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy
Environ. Sci., 7, 2448-2463, 2014.
5. Ma, H. H., Imran, M., Dang, Z., Hu, Z. Growth of Metal Halide Perovskite, from Nanocrystal to Micron-Scale Crystal: A Review, Crystals, 8, 182, 2018.
6. Hutter, E. M., Gélvez-Rueda, M. C., Osherov, A., Bulović, V., Grozema, F. C., Stranks, S. D., Savenije, T. J. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater., 16, 115–120, 2017.
7. Chen, T., Chen, W. L., Foley, B. J., Lee, J., Ruff, J. P. C., Ko, J. Y. P., Brown, C. M., Harriger, L. W., Zhang, D.,Park, C., Yoon, M., Chang, Y. M., Choi, J. J. and Lee, S. H. Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites PNAS, 114, 7519-7524, 2017.
8. Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., Yang, R. X., Walsh, A., and Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett., 15, 3692-3696, 2015.
9. Sutherland, B. R., Sargent, E. H. Perovskite photonic sources Nature Photonics, 10, 295–302 , 2016.
10. Arora, N., Dar, M. I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S. M., Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358, 768-771, 2017.
11. Green, M. A., Ho-Baillie, A., Snaith, H. J. The emergence of perovskite solar cells Nature Photonics, 8, 506-504, 2014.
12. Eaton, S. W., Lai, M., Gibson, N. A., Wong, A. B., Dou, L., Ma, J., Wang, L.-W., Leone, S. R., Yang, P. Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences, 113, 1993-1998, 2016.